Signaling memory from cell shape
نویسنده
چکیده
he shape of cells controls the speed and duration of signaling and can maintain short-term signaling memory in cellular subdomains, report Craske et al. on page 1147. In response to stimulation, signaling molecules move through cells to newly available binding sites at a rate consistent with random diffusion. In round cells, such diffusible signals reach different regions of the membrane at nearly the same time. To find out what happens in cells with complex morphologies, such as neurons that have thick and thin branches and spines, Craske et al. employed confocal video microscopy of YFP-labeled protein kinase C (PKC) movement following glutamate stimulation. PKC moved rapidly to the plasma membrane of the soma and thick branches, but arrived at the membrane of thin branches and spines several seconds later. Moreover, PKC remained in the membrane of thin branches and spines well after it had retreated from the membrane around the soma. T Glutamate triggers translocation of PKC␥ (green) into spines. The postsynaptic marker PSD95 is in red. Mathematical modeling indicated that diffusion could account for the pattern of PKC localization when cell shape was taken into account. The bulk of the cytosol, and thus the majority of PKC, is in the cell body before cell stimulation. Following stimulation, PKC movement was unimpeded in the soma and thick branches, but the larger surface area to volume ratio of thin branches meant that there was not enough PKC close by to fill the binding sites in the membrane. Thus, PKC continued to drift in from other parts of the cell after binding in the membrane of the soma and thick branches was complete. In the case of the spines, modeling showed that the narrow necks constrained PKC movement and slowed accumulation and dispersal. The differential rate of accumulation of PKC means that some regions of the cell could remain semi-active for five to ten seconds after signaling was complete in the soma. These cell regions would retain a memory of recent signaling events and would be primed for subsequent ones. The team expects such signaling memory will be found in other membrane-targeted proteins. Stabilizing the minus ends? icrotubule-stabilizing proteins are common at the growing plus end of filaments, but Barros et al. (page 1039) have evidence that such proteins may work at the minus end as well. M The phosphorylated version (light blue) of D-TACC (dark blue) helps focus microtubule nucleation at …
منابع مشابه
Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملEffect of Alumina Nanoparticles on the Enhancement of Shape Memory, Mechanical and Impact Properties of TPU/ABS blend
In this paper, the shape memory, mechanical and Izod impact properties of a new shape memory nanocomposite based on thermoplastic polyurethane (TPU), acrylonitrile butadiene styrene (ABS) and alumina nanoparticles were investigated. The morphological results showed that the presence of 1% alumina nanoparticles made a reduction in diameter of ABS domains and caused a uniform distribution of the ...
متن کاملAn experimental investigation on the energy storage in a shape-memory-polymer system
In this paper, the effect of thermomechanical loading on the behavior of deflection-based harvested energies from a shape memory polymer system is experimentally investigated. Samples are created with honeycomb cells from poly-lactic acid using additive manufacturing techniques. The shape memory effect in shape recovery and force recovery paths are studied under thermomechanical tests in bendin...
متن کاملA 3d Micro-Plane Model for Shape Memory Alloys
are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...
متن کاملP62: Agmatine Protects Against Intracerebroventricular Streptozotocin-Induced Water Maze Memory Deficit, Hippocampal ApoptosisandAkt/GSK3β Signaling Disruption
Intracerebroventricular stereptozotocin (STZ) treatment has been described as a suitable model for sporadic Alzheimer’s disease (sAD). Centrally administered STZ decreases insulin and insulin receptors in the brain and interrupts PI3/Akt signaling pathway and GSK-3β. Additionally it raises Bax/Bcl-2 ratio and prompts hippocampal apoptosis. Agmatine, a polyamine derived from L-arginin...
متن کاملSEISMIC OPTIMIZATION OF STEEL SHEAR WALL USING SHAPE MEMORY ALLOY
Nowadays, steel shear walls are used as efficient lateral-load-resistant systems due to their high lateral stiffness and carrying capacity. In this paper, the effect of substituting a shape memory alloy (SMA) material is investigated instead of using conventional steel in the shear wall. A numerical study is conducted using finite element method (FEM) by OpenSees software. For this purpose, at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 170 شماره
صفحات -
تاریخ انتشار 2005